Vos données dorment, faites-les travailler

Offert par Les Affaires


Édition du 06 Octobre 2018

Vos données dorment, faites-les travailler

Offert par Les Affaires


Édition du 06 Octobre 2018

Avoir les bonnes données et les compétences pertinentes pour les analyser est à la base d'une exploitation avantageuse de l'intelligence artificielle (IA). Pour une entreprise qui se lance pour la première fois, que faut-il savoir à ce sujet ? Comment structurer ses données, et comment acquérir le savoir-faire nécessaire ?


Landr est une PME montréalaise fondée en 2013. Elle offre plusieurs services, mais elle est surtout reconnue pour son service en ligne de matriçage (mastering) de pièce musicale, soit l'étape finale de production d'une chanson qui consiste à la polir pour qu'elle sonne bien sur différents types d'appareils audio.


Cette étape est normalement réalisée par un ingénieur de son, mais Landr y arrive en faisant plutôt appel à l'IA. Comment ? Elle a créé un algorithme qui «écoute» la chanson dont il faut faire le mastering, qui en détecte le genre, et qui lui assigne ensuite, en fonction de celui-ci, mais aussi en fonction de ses caractéristiques particulières, des réglages sur mesure.


«C'est important de déterminer le genre de chanson parce que l'on ne fera pas le même mastering s'il s'agit d'une sonate au piano que s'il s'agit d'une chanson de death metal suédois», explique le directeur de l'ingénierie chez Landr, Tommy Désilets, qui sera conférencier le 14 novembre à l'événement Intelligence d'affaires et analytique, organisé par le Groupe Les Affaires.


Pour arriver à offrir ce service, l'entreprise fait appel à l'apprentissage supervisé, une technique qui consiste essentiellement à soumettre une série de problèmes et de solutions à un ordinateur pour lui montrer quelle solution appliquer en présence d'un problème type, et lui apprendre à solutionner de nouveaux problèmes jamais rencontrés. Landr a donc créé une base de données contenant des chansons - les problèmes - et les réglages de mastering que leur appliqueraient différents ingénieurs de son - les solutions. L'algorithme de Landr apprend ainsi à faire le mastering de différents genres de chanson, et peut ensuite le faire à de nouvelles.


Quelques leçons de base


Que retenir de l'expérience de Landr ? D'abord, qu'il faut de bonnes données. «Un algorithme n'est bon que si vos données le sont, souligne M. Désilets. Si votre algorithme apprend d'un ensemble de données faussées, votre résultat final sera faussé lui aussi.» Pour construire son ensemble de données, Landr s'est donc fié à des experts, ses ingénieurs de son.


Ensuite, l'expérience de l'entreprise montre qu'il n'est pas nécessaire de commencer avec une énorme quantité de données. «Nous effectuons aujourd'hui le mastering d'environ 330 000 chansons par mois, alors nous enrichissons notre algorithme. Mais au départ, il aurait été impensable de partir d'une base de données de millions de chansons, dit M. Désilets. Nous avons donc commencé avec des chansons commerciales.»


De même, vous n'avez pas toujours à construire vos données de zéro. Si vous désirez par exemple construire un algorithme de reconnaissance d'objet, vous pouvez télécharger des bases de données d'images pré-étiquetées.


Enfin, Landr encourage ses employés à se former. «Une formation en ligne, par exemple sur Coursera, peut parfois être suffisante pour permettre à une personne débrouillarde de lancer un petit projet intéressant en IA», dit M. Désilets. Moins cher, également, que de recruter un nouvel employé.


Nettoyer ses données


Un projet d'IA commence généralement par le nettoyage des données, qui consiste entre autres à détecter et à corriger les erreurs qui pourraient s'y être glissées. Les gestionnaires attribuent toutefois rarement à cette étape l'importance qui lui revient.


«Il ressort de toutes les études que c'est une des tâches les plus cruciales des projets d'IA, une tâche qui peut en conséquence consommer jusqu'à la moitié du temps consacré à un projet», explique le professeur Placide Poba-Nzaou. Ce dernier donnera la nouvelle formation L'intelligence artificielle : comprendre les impacts pour les organisations, les emplois et les compétences au Centre de perfectionnement de l'ESG-UQAM.


Structurer les données est également important. Selon M. Poba-Nzaou, moins de 20 % des données que détiennent les entreprises sont structurées. Qu'est-ce qu'une donnée structurée ? Un classeur Excel, par exemple, qui peut être analysé immédiatement. Et une donnée non structurée ? Les courriels reçus des clients. Pour structurer ceux-ci, il faudrait, par exemple, les transformer en un format analysable par un logiciel de traitement de données, et leur ajouter des étiquettes pour indiquer s'il s'agit, disons, d'une plainte ou d'une suggestion.


M. Poba-Nzaou suggère aux entreprises, une fois les données structurées, d'y aller étape par étape. Une firme devrait ainsi, en règle générale, commencer par l'analyse descriptive, et passer ensuite à l'analyse prédictive et prescriptive. Un service de ressources humaines devrait par exemple dresser le portrait de ses employés d'abord, puis prédire ensuite les départs en fonction de caractéristiques particulières, et enfin seulement tenter de prescrire une solution, grâce à l'IA, pour réduire le roulement. «Vous ne pouvez prescrire de solution si vous n'avez pas encore compris quel est le problème», dit M. Poba-Nzaou.


Sage était celui qui suggéra pour la première fois de commencer par le commencement.


image

Blockchain

Jeudi 28 février


image

Pénurie de talents

Mercredi 13 mars


image

Objectif Nord

Mardi 09 avril


image

Femmes Leaders

Mercredi 24 avril


image

Gestion agile

Mercredi 08 mai

Sur le même sujet

Element AI: l'intelligence artificielle montréalaise se dévoile enfin

12/02/2019 | Alain McKenna

BLOGUE. Avec plus de 500 employés et un butin avoisinant les 140M$, Element AI se met (finalement) en marche.

Trump: l'intelligence artificielle (américaine) d'abord

12/02/2019 | AFP

Le texte présidentiel ne détaille en revanche aucun montant ni aucune stratégie pour ce faire.

À la une

Les démocrates proposent une révolution verte aux États-Unis

16/02/2019 | François Normand

ANALYSE - Des démocrates proposent un New Deal qui pourrait transformer les États-Unis comme celui de Roosevelt.

Bourse: le rebond de 18% suscite la méfiance

BLOGUE. Les experts se demandent si la pause de la Fed suffira à contrecarrer la récession possible des profits.

Bourse: les gagnants et perdants de la semaine

15/02/2019 | Martin Jolicoeur

Quels sont les titres qui ont marqué l'actualité boursière? Surprise: l'un d'entre-eux n'aura pu faire mieux que SNC.